NON-GENERICITY OF MINIMISING PERIODIC ORBITS

Daniel Massart

Comunicación Técnica No I-02-13/10-07-2002
(MB/CIMAT)

NON-GENERICITY OF MINIMSING PERIODIC ORBITS

DANIEL MASSART

Abstract

We answer in the negative Problem IV of [Mn95], for configuration spaces of dimension ≥ 3. A positive answer is given for the two-dimensional case in [Mt02].

1. Introduction

Let M be a smooth, closed, connected manifold and L be a Lagrangian on the tangent bundle $T M$, that is, a $C^{r}, r \geq 2$ function on $T M$ which is convex and superlinear when restricted to any fiber. The Euler-Lagrange equation then defines a complete flow Φ_{t} on $T M$.

Given a closed one-form $\omega, L-\omega$ is again a Lagrangian and its EulerLagrange flow is the same as that of L. We are interested in probability measures on the tangent bundle $T M$, that are invariant under the EulerLagrange flow, and minimise the action of $L-\omega$, that is, the integral $\int_{T M}(L-$ $\omega) d \mu$. Actually this action only depends on the cohomology class c of ω (see [Mr91] and the next section). The measures achieving the minimum are called c-minimising, or simply minimising if $c=0$.

We say a property is true for a generic Lagrangian if, given a Lagrangian L, there exists a residual (countable intersection of open and dense subsets) subset \mathcal{O} of $C^{\infty}(M)$ such that the property holds for $L+f, \forall f \in \mathcal{O}$. Mañé ([Mn96]) proved for a generic Lagrangian, there exists a unique minimising measure and proposed in [Mn95] (Problem IV)(see also [Mn96], Problem III) the following

Problem 1 (Mañé). Is it true that for a generic Lagrangian, there exists a dense open subset of \mathcal{U} of $H^{1}(M, \mathbb{R})$ such that for any c in \mathcal{U} there is a unique c-minimising measure and it is supported on a periodic orbit?

The answer is yes when M is a closed, orientable surface (see [Mt02]). It turns out to be no in higher dimensions, as shown our next Theorem.

If the conjecture was true, we could find a sequence f_{n} of C^{∞} functions on M, going to zero in the C^{∞} topology, such that for every n, there exists an open dense subset U_{n} of $H^{1}(M, \mathbb{R})$, such that for any c in U_{n}, the conjecture holds. The intersection U over \mathbb{N} of the U_{n} is dense in $H^{1}(M, \mathbb{R})$. So for every c in U, the set of functions f such that $L+c+f$ has a minimising periodic orbit accumulates at zero.

Given a Lagrangian L and a cohomology class c, denote $\mathcal{O}_{L, c}$ the set of $f \in C^{\infty}(M)$ such that for ω in $c, L+\omega+f$ has a minimising periodic orbit.

[^0]Theorem 2. Let M be a manifold of dimension ≥ 3. There exists a Lagrangian L on M and an open neighborhood U of 0 in $H^{1}(M, \mathbb{R})$ such that for any c in U, the set $\mathcal{O}_{L, c}$ does not accumulate at zero in the C^{4}-topology.

See [Mn97] and [CDI97], for a stronger conjecture where we perturb only by a function ; and [Mt02a] for a disproof thereof when M is the two-torus.

The idea here is, first, to construct a Lagrangian on M, the minimising set of which is contained in a contractible part of M. Theorem 1 of [Mt02] then ensures that for a small enough cohomology class $c=[\omega]$, the minimising measure of $L-\omega$ is the same as that of L. Besides, we make up the Lagrangian so the Euler-Lagrange flow restricted to the support of its minimising measure is an irrational flow on an imbedded two-torus, with the slope quadratic. From there the idea is to use the Diophantine approximation properties of the slope as in [Mt02a], to prove that a C^{4} perturbation by a function on M cannot create a minimising periodic orbit.

2. Prerequisites

Given a C^{1} curve γ defined on some compact interval I into M, the L action of γ is the integral $\int_{I} L(\gamma, \dot{\gamma}) d s$. The curve γ is said to be minimising if it minimises the L-action over all C^{1} curves defined over the same interval, with the same endpoints. A C^{1} curve $\gamma: \mathbb{R} \longrightarrow M$ is said to be minimising if its restriction to any compact interval is. An orbit $\gamma: \mathbb{R} \longrightarrow T M$ is said to be minimising if its projection to M is. We denote by $\mathcal{G}(L)$ the union in $T M$ of all minimising orbits. Note that the support of a minimising measure is always contained in $\mathcal{G}(L)$. The Aubry set, denoted $\mathcal{A}_{0}(L)$, is the projection to M of a special set of of minimising orbits, containing all supports of minimising measures (see [Fa00] for more information).

Mather's α-function is defined in [Mr91] as

$$
\alpha(\omega)=-\min \left\{\int_{T M}(L-\omega) d \mu: \mu \in \mathcal{M}\right\}
$$

where \mathcal{M} is the set of closed measures on $T M$, that is (see [Ba99]) the compactly supported probability measures μ on $T M$ such that $\int d f d \mu=0$ for every C^{1} function f on M. In other words, those are the measures with a well-defined homology class. The measures achieving the minimum are invariant by the Euler-Lagrange flow Φ_{t} of L (see [Ba99]).

The quantity α defines a convex and superlinear function on $H^{1}(M, \mathbb{R})$. It may not be stricly convex, however. It turns out ([Mt02]) that whenever there exists a closed, non-exact one-form ω supported away from $\mathcal{A}_{0}(L)$, the α-function has a flat. That is to say, its epigraph contains a piece of affine subspace, and the underlying vector space of this affine subspace contains the cohomology class of ω.

3. The Lagrangian

Let M be a 3 -dimensional manifold and let B be an embedding into M of the unit ball of \mathbb{R}^{3}. Consider an embedding into B of $\left.\mathbb{T}^{2} \times\right]-1,1[$, the two-torus times an open interval, equipped with coordinates (x, y, z). Take a Riemannian metric on M, such that its restriction to $\left.\mathbb{T}^{2} \times\right]-1,1[$ is $d x^{2}+d y^{2}+d z^{2}$. Let p, q be real numbers such that $p^{2}+q^{2}=1$ and p / q is
irrational and quadratic. We define a differential 1-form α in $\left.\mathbb{T}^{2} \times\right]-1,1[$ by $(x, y, z, u, v, \zeta) \mapsto-(p u+q v)$ where (x, y, z, u, v, ζ) is a tangent vector to M at the point of coordinates (x, y, z). Extend α to a 1 -form on M. Let ϕ be a C^{∞} function on M, the restriction of which to $\left.\mathbb{T}^{2} \times\right]-1,1\left[\right.$ is $(x, y, z) \mapsto z^{2}$ and such that $f(P) \geq 1$ for all P in $\left.M \backslash \mathbb{T}^{2} \times\right]-1,1[$. Our Lagrangian is then defined as the sum of the quadratic form that comes with the Riemannian metric, the 1 -form α, and the function ϕ. In particular, in $\left.\mathbb{T}^{2} \times\right]-1,1[$ it takes the form

$$
L(x, y, z, u, v, \zeta)=\frac{1}{2}\left(u^{2}+v^{2}+1\right)-p u-q v+z^{2}
$$

Furthermore we choose α so that L is a non-negative function on $T M$, vanishing only on the set hereafter defined.

Proposition 3. The minimising set of the Lagrangian L is

$$
\left\{(x, y, 0, p, q, 0):(x, y) \in \mathbb{T}^{2}\right\}
$$

Proof. The vector field ($x, y, 0, p, q, 0$) defines an irrational foliation of $\mathbb{T}^{2} \times 0$, hence it admits a unique, ergodic invariant measure which we denote μ. First note that this measure is the L-minimising. Indeed its L-action is zero, since $L(x, y, 0, p, q, 0)=0$ for any (x, y), while the action of any measure is nonnegative since L itself is non-negative.

Then observe that μ is the only minimising measure. Indeed if a measure is not supported inside $\mathbb{T}^{2} \times\{0\}$, it must have positive action. But then a minimising measure, which must be invariant by the Euler-Lagrange flow of L, must be invariant by the vector field $(x, y, 0, p, q, 0)$, which is uniquely ergodic.

Thus any minimising orbit must be asymptotic, positively and negatively, to $\operatorname{supp}(\mu)([\mathrm{Fa} 00])$. Assume that a minimising orbit $\gamma: \mathbb{R} \longrightarrow T M$ is not contained in $\operatorname{supp}(\mu)$. Then there exists $\delta>0$ and a, b in \mathbb{R} such that for every $s \leq a, t \geq b$, we have $\int_{s}^{t} L(\gamma(r)) d r \geq \delta$. On the other hand, γ being asymptotic, positively and negatively, to $\operatorname{supp}(\mu)$, there exists $S \leq a, T \geq b$ in \mathbb{R} such that for any $t \geq T, s \leq S$, the point $\gamma(t)$ (resp. $\gamma(s)$) may be joined to a point $P_{t}\left(\right.$ resp. $\left.P_{s}\right)$ in $\operatorname{supp}(\mu)$ by a path of L-action less than $\delta / 3$. The orbits of the vector field $(x, y, 0, p, q, 0)$ are dense in $\mathbb{T}^{2} \times 0$, and have zero L-action, so there exists a path in $\mathbb{T}^{2} \times 0$ of L-action less than $\delta / 3$, joining P_{t} and P_{s}. Hence we can build a path between $\gamma(t)$ and $\gamma(s)$ of L-action strictly less than δ, contradicting the fact that γ is minimising.

Corollary 4. There exists a neighborhood U of 0 in $H^{1}(M, \mathbb{R})$ such that for any ω in U, the only ω-minimising measure is μ.

Proof. Since the projection to M of $\mathcal{G}(L)$, hence the Aubry set $\mathcal{A}_{0}(L)$, is contained in B which is contractible, there exists 1-forms $\omega_{1}, \ldots \omega_{n}$, supported away from $\mathcal{A}_{0}(L)$, the cohomology classes of which generate $H^{1}(M, \mathbb{R})$. By [Mt02], Theorem 1, this implies that the α-function of L has a face of codimension zero containing the null cohomology class in its interior. Such a face is a neighborhood of the origin. Call U its interior. Then by [Mt02], Proposition 6, for every 1-form ω with $[\omega]$ in U, the Aubry sets for L and $L-\omega$ coincide. In particular, every $L-\omega$-minimising measure is also L minimising, hence μ is the only $L-\omega$-minimising measure.

4. Coverings

Assume that for some ω in U there exists a sequence f_{n} of C^{∞} functions on M converging to zero in the C^{2}-topology, and closed curves $\gamma_{n}:\left[0, t_{n}\right] \longrightarrow$ M such that the probability measure evenly distributed along γ_{n} is $L+f_{n^{-}}$ minimising. First note that by semi-continuity of $\mathcal{G}(L)$ with respect to L ([Mt02a], Proposition 3) for n large enough, for any $c \in U, \mathcal{G}\left(L+c+f_{n}\right)$ is contained in $\left.\mathbb{T}^{2} \times\right]-1,1\left[\right.$. Then we may write $\gamma_{n}(t)=\left(x_{n}(t), y_{n}(t), z_{n}(t)\right)$ in $\left.(\mathbb{R} / \mathbb{Z})^{2} \times\right]-1,1[$.

The closed curve γ_{n} represents an integer homology class in $H_{1}\left(T^{2} \times\right]-$ $1,1[, \mathbb{R})$ which is generated by the curves $\{x=z=0\},\{y=z=0\}$. Let $\left(p_{n}, q_{n}\right)$ be the corresponding coordinates of $\left[\gamma_{n}\right]$.

Lift this curve to the universal cover $\left.\mathbb{R}^{2} \times\right]-1,1[$, keeping the same notations. Then the coordinates x_{n} and y_{n} belong to \mathbb{R} and we have $x_{n}\left(t+t_{n}\right)=x_{n}(t)+p_{n}, y_{n}\left(t+t_{n}\right)=y_{n}(t)+q_{n}$. By semi-continuity of \mathcal{G}, for n large enough, the tangent vector to $\gamma_{n}(t)$, being close to $(p, q, 0)$, is not orthogonal to $\partial / \partial x$, so the function $t \mapsto x_{n}(t)$ is injective. For the same reason, the derivative $\dot{x}_{n}(t)$ does not vanish for large n 's. Define, for any real number $s, \gamma_{n, s}(t)=\left(x_{n}(t), y_{n}(t)+s, z_{n}(t)\right)$. So $\gamma_{n, s_{1}}\left(t_{1}\right)=\gamma_{n, s_{2}}\left(t_{2}\right)$ implies

$$
\begin{cases}x_{n}\left(t_{1}\right) & =x_{n}\left(t_{2}\right) \\ y_{n}\left(t_{1}\right)+s_{1} & =y_{n}\left(t_{2}\right)+s_{2} \\ z_{n}\left(t_{1}\right) & =z_{n}\left(t_{2}\right)\end{cases}
$$

By injectivity the first equation implies $t_{1}=t_{2}$, whence $s_{1}=s_{2}$ from the second equation. Hence the $\gamma_{n, s}$ foliate a surface S_{n} homeomorphic to \mathbb{R}^{2}, endowed with the (possibly not free) action of \mathbb{Z}^{2} which takes $\left(x_{n}(t), y_{n}(t)+\right.$ $\left.s, z_{n}(t)\right)$ to $\left(x_{n}(t)+a, y_{n}(t)+s+b, z_{n}(t)\right)$ for (a, b) in \mathbb{Z}^{2}. The tangent space to S_{n} at $\left(x_{n}(t), y_{n}(t)+s, z_{n}(t)\right)$ is generated by $\left(\dot{x}_{n}(t), \dot{y}_{n}(t), \dot{z}_{n}(t)\right)$ and $(0,1,0)$, thus it contains the vector

$$
\left(p, q, \dot{z}_{n}(t)\right)=\frac{p}{\dot{x}_{n}(t)}\left(\dot{x}_{n}(t), \dot{y}_{n}(t), \dot{z}_{n}(t)\right)+\left(q-\frac{p}{\dot{x}_{n}(t)}\right)(0,1,0) .
$$

The above formula defines a vector field Y on the surface S_{n}. Note that while the aforementioned \mathbb{Z}^{2}-action on S_{n} may not be free, the action of the subgroup $p_{n} \mathbb{Z} \times\{0\}+\{0\} \times q_{n} \mathbb{Z}$ is free. Indeed, assume for some t_{1}, s_{1} and t_{2}, s_{2} and integer k, k^{\prime} we have

$$
\left(x_{n}\left(t_{1}\right)+k p_{n}, y_{n}\left(t_{1}\right)+s_{1}, z_{n}\left(t_{1}\right)\right)=\left(x_{n}\left(t_{2}\right)+k^{\prime} p_{n}, y_{n}\left(t_{2}\right)+s_{2}, z_{n}\left(t_{2}\right)\right)
$$

Then we have

$$
\begin{cases}x_{n}\left(t_{1}\right) & =x_{n}\left(t_{2}\right)+\left(k^{\prime}-k\right) p_{n} \\ y_{n}\left(t_{1}\right)+s_{1} & =y_{n}\left(t_{2}\right)+s_{2}\end{cases}
$$

Now since γ_{n} is t_{n}-periodic with homology $\left(p_{n}, q_{n}\right)$ the first equation reads $x_{n}\left(t_{1}\right)=x_{n}\left(t_{2}+\left(k^{\prime}-k\right) t_{n}\right)$ and by injectivity of $t \mapsto x_{n}$ this implies $t_{1}=$ $t_{2}+\left(k^{\prime}-k\right) t_{n}$. Then $y_{n}\left(t_{1}\right)+s_{1}=y_{n}\left(t_{2}\right)+\left(k-k^{\prime}\right) q_{n}+s_{1}$ whence $s_{2}=$ $s_{1}+\left(k-k^{\prime}\right) q_{n}$. In particular if $k=k^{\prime}$ we have $t_{1}=t_{2}$ and $s_{1}=s_{2}$ so the action is free. Its quotient is a two-torus $\mathbb{T}_{p_{n}, q_{n}}^{2}$ which covers a (possibly not embedded) \mathbb{T}^{2} in $\left.\mathbb{T}^{2} \times\right]-1,1\left[\right.$ with covering group $\mathbb{Z} / p_{n} \mathbb{Z} \times \mathbb{Z} / q_{n} \mathbb{Z}$.

The vector field Y descends to a vector field on $\mathbb{T}_{p_{n}, q_{n}}^{2}$ and defines an irrational foliation there, since the ratio of p and q is irrational. Hence Y
admits a unique, ergodic invariant measure μ_{n}^{\prime}. This measure is closed since it is invariant by a flow (see [Mr91]).

5. Proof of the Theorem

From now on we work in $\left.\mathbb{T}_{p_{n}, q_{n}}^{2} \times\right]-1,1\left[\right.$, still denoting f_{n} the composition $f_{n} \circ \pi$, where π is the projection of the cover $\left.T_{p_{n}, q_{n}}^{2} \times\right]-1,1\left[\longrightarrow \mathbb{T}^{2} \times\right]-1,1[$. So f_{n} is now a $\mathbb{Z} / p_{n} \mathbb{Z} \times \mathbb{Z} / q_{n} \mathbb{Z}$-periodic function on $\left.\mathbb{T}_{p_{n}, q_{n}}^{2} \times\right]-1,1[$. Neither do we change notations for γ_{n}.

Since the curve γ_{n} is $L+\omega+f_{n}$-minimising, its lift to $\left.\mathbb{T}_{p_{n}, q_{n}}^{2} \times\right]-1,1[$ is again minimising ([Fa98, CP02]) and we have

$$
\begin{equation*}
\int\left(L+\omega+f_{n}\right) d \gamma_{n} \leq \int\left(L+\omega+f_{n}\right) d \mu_{n}^{\prime} \tag{1}
\end{equation*}
$$

where we denote γ_{n} the probability measure evenly distributed on the curve γ_{n}. Note that $\int \omega d \gamma_{n}=\int \omega d \mu_{n}^{\prime}=0$ since both γ_{n} and μ_{n}^{\prime} are supported in a contractible region of M. Besides, we have $L\left(x_{n}(t), y_{n}(t), z_{n}(t), p, q, \dot{z}_{n}(t)\right)=$ $z_{n}^{2}(t)$ so Equation 1 becomes

$$
\begin{equation*}
\int\left(\frac{1}{2}\left(u^{2}+v^{2}+1\right)-p u-q v\right) d \gamma_{n} \leq \int\left(z^{2}+f_{n}\right) d \mu_{n}^{\prime}-\int\left(z^{2}+f_{n}\right) d \gamma_{n} \tag{2}
\end{equation*}
$$

The ratio p / q being quadratic, the left-hand term in the above equation is greater than or equal to C / q_{n}^{4} for some positive C (see [Mt02a], 2.3).

Define on the circle $\mathbb{T}_{p_{n}, q_{n}}^{2} \cap\{x=0\} \cong \mathbb{R} / p_{n} \mathbb{Z}$ the function $\phi_{n}(y)$ as the mean value of $f_{n}+z^{2}$ on the leaf of the foliation going through y. Then ϕ_{n} is C^{k} if f_{n} is C^{k}. Besides, since the derivatives with respect to y of z^{2} are everywhere zero, $\phi_{n}^{(k)}(y)$ is the mean value of $\partial^{(k)} f_{n} / \partial y^{(k)}$ on the leaf of the foliation going through y, that is

$$
\forall k \in \mathbb{N} \backslash\{0\}, \phi_{n}^{(k)}(y)=\frac{1}{T_{n}} \int_{0}^{T_{n}} \frac{\partial^{k} f_{n}}{\partial y^{k}}(x, y) d x
$$

Note that the C^{4}-norm of f_{n} is greater than or equal to that of ϕ_{n}. Indeed so if for some y we have $\phi_{n}^{(4)}(y) \geq K$ for some K, then there exists x such that $\partial^{k} f_{n} / \partial y^{k}(x, y) \geq K$. Besides the mean value of ϕ_{n} over $\{x=0\}$ equals the mean value of f_{n} over \mathbb{T}^{2}. Note that ϕ_{n} is 1-periodic and C^{∞}, so for any $k, \phi_{n}^{(k)}$ vanishes at least once in $[0,1]$.

Assume for definiteness that γ_{n} crosses $\{x=0\}$ at $y=0$. Since γ_{n} is minimising in particular it minimises among its translates so we may assume, up to adding a constant, that $\phi_{n} \geq 0=\phi_{n}(0)$. Since γ_{n} crosses $\{x=0 ; y \in[0,1]\} q_{n}$ times, there exists at least one interval in $\{x=0 ; y \in$ $[0,1]\}$ of length $\leq 1 / q_{n}$ which is crossed exactly once by all leaves of the foliation. Changing the origin if we have to, to another point of γ_{n}, we may assume this interval is $\left[0, a_{n}\right]$. So every value of ϕ_{n} and its derivatives is taken at least once in $\left[0, a_{n}\right]$. Thus for every k in \mathbb{N}, there exists x_{k} in $\left[0, a_{n}\right]$ such that $\phi_{n}^{(k)}\left(x_{k}\right)=0$.

Proposition 7 of [Mt02a] (see below) then shows shows that ϕ_{n}, hence f_{n}, does not go to zero in the C^{4}-topology.

Proposition 5. Let ϕ_{n} be a sequence of real-valued,non-negative, C^{∞}, 1periodic functions with $\phi_{n}(0)=0$. Assume there exists a sequence of integers $q_{n} \longrightarrow \infty$ such that

- the mean value of ϕ_{n} is $\geq 1 / q_{n}^{4}$
- every value of ϕ_{n} and its derivatives is taken at least once in an interval $\left[0, a_{n}\right]$ with $a_{n} \leq 1 / q_{n}$.
Then for all k in \mathbb{N}, there exists y_{k} in $\left[0, a_{n}\right]$ such that $\phi_{n}^{(k)}\left(y_{k}\right) \geq C q_{n}^{k-4}$.

References

[Ba99] Bangert, Victor Minimal measures and minimizing closed normal one-currents GAFA 9 (1999), no. 3, 413-427.
[CDI97] G. Contreras, J. Delgado, R. Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II. Bol. Soc. Brasil. Mat. N.S.) 28 (1997), no. 2, 155-196.
[CP02] G. Contreras, G. Paternain Connecting orbits between static classes for generic Lagrangian systems Topology, 41 (2002), no. 4, 645-666.
[Fa98] A. Fathi Orbites hétéroclines et ensemble de Peierls, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 10, 1213-1216.
[Fa00] A. Fathi, Weak KAM theorem in Lagrangian dynamics, preprint
[Mn95] Mañé, Ricardo Ergodic variational methods: new techniques and new problems Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1216-1220, Birkhäuser, Basel, 1995
[Mn96] Mañé, Ricardo Generic properties and problems of minimizing measures of Lagrangian systems Nonlinearity 9 (1996), no. 2, 273-310.
[Mn97] Mañé, Ricardo Lagrangian flows: the dynamics of globally minimizing orbits Bol. Soc. Brasil. Mat. (N.S.) 28 (1997), no. 2, 141-153.
[Mt02] D. Massart On Aubry sets and Mather's action functional, to appear, Israël Journal of Mathematics, preprint available at http://www.cimat.mx/ massart
[Mt02a] D. Massart On Mañé's Last Conjecture, preprint available at http://www.cimat.mx/ ~massart
[Mr91] J. N. Mather Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207, 169-207 (1991).

CIMAT, Guanajuato Gto., Mexico and
GTA, UMR 5030, CNRS, Université Montpellier II, France
e-mail : massart@cimat.mx

[^0]: Date: July 10, 2002.

